
(12) United States Patent
Scardo et a].

US007076480B2

US 7,076,480 B2
Jul. 11, 2006

(10) Patent N0.:
(45) Date of Patent:

(54)

(75)

(73)

(21)

(22)

(65)

(51)

(52)
(58)

(56)

EP

DYNAMIC ADJUSTMENT OF COMMIT OTHER PUBLICATIONS
FRE UENCY

Q European Search Report mailed Jun. 22, 2004 and prepared
_ . . - May 12, 2004 in corresponding European Application No. I t.Wll E.S dRhmdVA

‘Wen 0“ 1 {am car "3 1C 0.“ ’ EP 03251302 (published as NO. EPl 394 700 A2 011 Mar. 3,
(US), Gary L. Blair, Ashev1lle, NC _
(Us) 2004), European Patent Of?ceiBerlln, (2 pages plus

cover).
Assignee: Softbase Systems, Inc., Asheville, NC Adams 8': “Oracle _Advanced PBI'fOFmaIFCB Tumng

(Us) ScrlptiRedo Log Scr1pts” Internet Publ1cat1on, Onl1ne!
May 15, 2002, XP002278874 Retrieved from the Internet:

Notice: Subject to any disclaimer, the term of this <URL3hnPWWWWiXOra~COm~au/5CriPt5/redOi1Og~
patent is extended or adjusted under 35 htm#commitievery > re-retrieved on Jul. 15, 2004.
U_S_C_ 154(1)) by 339 days_ International Technical Support Organization: “DB2 for

OS/390 Application Design Guidelines for High Perfor
Appl, N0.: 10/186,442 mance” Internet Publication, Online! Aug. 1997,

XP002278875 Retrieved from the Internet: <URL:http://
Filed: Jul. 1, 2002 WWW.frc.utn.edu.ar/campus/ibm/pdfs/sg242233.pdf> re-re

trieved on Jul. 15, 2004 section “5.7.4 Commit Frequency”.
Prior Publication Data

Us 2004/0002975 A1 Jan. 1, 2004 (Continued)

Int Cl Primary ExamineriDon Wong
' ' Assistant ExamineriThanh-Ha Dang

(74) Attorney, Agent, or F irmiCarter Schnedler &
(') Monteith, PA.

US. Cl. 707/3; 707/8

Field of Classi?cation Search 707/10, (57) ABSTRACT

707/2, 3, 8; 714/39
See application ?le for complete search history.

An interface between a relational database application pro
References Cited gram and a database management system that reduces

application program execution time by reducing the number
U'S' PATENT DOCUMENTS of commit operations performed by the commit facility of

5,319,773 A 6/1994 Britton et al. the database management system. Repeatedly, commit state
5,369,764 A 11/ 1994 Blair ments issued by the application program are suppressed until

i i 231311“ et atLal ~~~~~~~~~~~~~~ 903276? a time interval based on a time interval parameter has
, , erson e . . - .

6,286,004 B1 * 9/2001 Yoshiura et a1. 707/10 elapfedtiand then ‘119mm coénmlttsti‘ltlemdiitgssued by the
6,751,753 Bl* 6/2004 Nguyen et a1. 714/39 app lcalon Program 15 Passe on 0 e a ase manage‘

ment system.
FOREIGN PATENT DOCUMENTS

l 394 700 A2 3/2004 36 Claims, 8 Drawing Sheets

10
p/

APPLICATION
PROGRAM

‘\
SQL UPDATE
SQL UPDATE
SQL UPDATE
SQL COMMIT 12

SQL UPDATE
SQL UPDATE SQL, INCLUDING
SQL UPDATE P PROGRAM COMMIT STATEMENTS
SQL COMMIT

SQL UPDATE
SQL UPDATE
SQL UPDATE
SQL COMMTT J

US 7,076,480 B2
Page 2

OTHER PUBLICATIONS

Dunn S: “Commit Frequency” Internet Publication, Online!
Apr. 14, 1995, XP002278876 Retrieved from the Internet:
<URL: http://groups.google.de/
groups?q:commit+frequency+elapsed&hl:de&lr:
&ie:UTF-8&selm:797898l l l snZ%40lilydale.demon.co.
uk&mum:l> re-retrieved on Jul. 15, 2004.
Adams S: “HoW to speed up an update” Internet Publication,
Online! Apr. 5, 2001, XP002278877 Retrieved from the
Internet: <URL:http ://WWW.iXora.com.au/q+a/0 l 04/

05l44430.htm>re-retrieved on May 3, 2004! *the Whole
document*.
Baker B: “The Woes of Commitment” Internet Publication
DB2 Magazine, Online! 1998, XP002278878 Retrieved
from the Internet: <URL:http://WWW.db2mag.com/dbiarea/
archives/l998/q3/98fprog.shtml> re-retrieved on Jul. 15,
2004 section “Too Many Commits” section “and this is just
Right”.

* cited by examiner

U.S. Patent Jul. 11,2006 Sheet 1 0f 8 US 7,076,480 B2

APPLICATION
PROGRAM

SQL UPDATE 7
SQL UPDATE
SQL UPDATE
SQL COMMIT

SQL UPDATE
SQL UPDATE SQL, INCLUDING
SQL UPDATE F PROGRAM COMMTT STATEMENTS
SQL COMMTT

SQL UPDATE
SQL UPDATE
SQL UPDATE
SQL COMMIT

12

U.S. Patent Jul. 11,2006 Sheet 3 0f 8 US 7,076,480 B2

72 70
PROGRAM COMMIT

STATEMENT

V

QUERY 74
TIMER N

ZERO TIME
N0 REMAINING

84

KSELECTED COMMIT
8° PASS COMMIT was

(COMMIT STATEMENT sTATEksglilnTs ON TO
SUPPRESSED) (DBMS COMMIT

STATEMENT)

START TTMER N 88

END 90

U.S. Patent Jul. 11,2006 Sheet 4 0f 8 US 7,076,480 B2

PROGRAM COMMIT ‘02 100
STATEMENT

T, j
INCREMENT 104
COUNTER

108
COUNTER

(WHICH EQUALS
COMMTTFREQ)

2

118

122

FIG.4

110

/SELECTED COMMIT
PASS COMMIT STATEMENT

STATEMENT ON TO __c:'112
DBMS (DBMS COMMTT

‘' STATEMENT)

RESET COUNTER
T0 ZERO

T

130

T (J SELECTED COMMIT
PASS COMM“ STATEMENT

STATEMENT ON TO *4: ‘32

DBMS (DBMS COMMIT
V STATEMENT)

START TIMER

N114

T
RESET COUNTER

TO ZERO

T

U.S. Patent Jul. 11,2006 Sheet 5 0f 8 US 7,076,480 B2

150

152 J

“154

COUNTER = N @155

STARLTIME = 158
CURRENLUME

160

FIG.5

U.S. Patent Jul. 11,2006 Sheet 6 0f 8

PROGRAM COMMIT '72
STATEMENT

T 170

DECREMENT 174 /
COUNTER N

COUNTER
= 0 ?

(COMMIT STATEMENT
SUPPRESSED)

182

184

V /

US 7,076,480 B2

SELECTED COMMIT
PASS COMMIT STATEMENT

STATEMENT ON To ——C:'‘86
DBMS (DBMS COMMIT

STATEMENT)
V

COUNTER = N miss

‘' 190
END

U.S. Patent Jul. 11,2006 Sheet 7 0f 8 US 7,076,480 B2

DBMS COMMIT
STATEMENT

ELAPSEDJTME = 204
CURRENLTIME — START_T|ME N

START_T|ME = CURRENLTIME "$06

200

202

ELAPSED_TIME ELAPSED_T|ME
< TIME_|NTERVAL > TIME_|NTERVAL

COMPARE + THRESHOLD — THRESHOLD

‘ ELAPSED_TIME T0

TIME_|NTERVAL

v WITHIN

INCREASE N ~216 RANGE DECREASE N

N210

212 224

U.S. Patent Jul. 11,2006 Sheet 8 0f 8 US 7,076,480 B2

230

nmllmillillul. :95
LMUJHIHHHHH

US 7,076,480 B2
1

DYNAMIC ADJUSTMENT OF COMMIT
FREQUENCY

BACKGROUND OF THE INVENTION

The invention relates generally to computer databases
and, more particularly, to an interface betWeen a relational
database application program and a database management
system Which includes locking and commit facilities.

Databases are computeriZed information storage and
retrieval systems. A database manager, also knoWn as a
database management system (DBMS) or a relational data
base management system (RDBMS), is a complex and
sophisticated computer program that provides a variety of
tools for de?ning, manipulating data in, controlling access to
and otherWise managing the database in a variety of Ways.
The database management system stores and retrieves data
as database records organiZed into tables Which consist
(conceptually) of roWs and columns of data. Conventionally,
database records are accessed a roW at a time.

It is quite possible for a database management system to
access database records in response to commands typed one
at a time by individual on-line users accessing the database
from terminals, Which typically are remotely distributed.
HoWever, embodiments of the invention are concerned With
batch mode execution of database application programs that
include programming statements (program code) Written in
a language such as SQL (Structured Query Language). As a
matter of convenience, such program statements are some
times referred to hereinbeloW and in the accompanying
draWings as SQL statements, and include statements to
create, modify and delete database records in accordance
With the intended purpose of the application program.
A signi?cant characteristic of computer operating systems

and database management systems With Which the invention
is concerned is that they are multitasking. Thus, more than
one on-line user and/or more than one batch-mode applica
tion program can interact With the database through the
database management system at the same time.
A particular relational database management system in

combination With Which the invention may be employed is
knoWn as DB2, a product of International Business
Machines Corporation (IBM). DB2 runs on mainframe
computers under operating systems such as OS/390. Ver
sions are also available for various personal computer oper
ating systems. The invention, hoWever, is not in any Way
limited to use in combination With DB2, and may, for
example, be employed in combination With other relational
database management systems such as Oracle, Sybase,
Informix and SQL Server.

Historically, an IBM softWare product named Time Shar
ing Option (TSO) Was employed as part of a computer
operating system to enable batch mode database application
programs to access the records of a database managed by
DB2. DB2 itself had no batch mode interface.

In vieW of various limitations associated With TSO, other
approaches have been developed to run DB2 database
application programs in batch mode, such as the approach in
a product knoWn as Database AttachTM, marketed by Soft
base Systems, Inc., of Asheville, NC. (url http://WWW.soft
base.com) The Database AttachTM product is an interface
betWeen application programs and the Call Attachment
Facility of the DB2 database management program, Which
interface does not require the TSO environment. Database
AttachTM handles execution of SQL statements, passing
them on to the DB2 Call Attachment Facility. An ENQ
feature of Database AttachTM that virtually eliminates dead

20

25

30

35

40

45

50

55

60

65

2
lock/timeout conditions betWeen competing batch-mode
applications is disclosed in Blair US. Pat. No. 5,369,764.
An essential capability of a practical, multi-user database

management system, such as DB2, is to control concurrency.
Thus, in an environment Where more than one application
process or user is accessing the same database, there is
alWays a danger that the actions of one application process
or user can interfere With those of another, unless suitable
controls are in effect. Preventing essentially simultaneous
transactions from interfering With each other, in other Words,
controlling concurrency, means making sure that data is not
seen or operated on by another user or batch application
program, until a pending change is complete. Accordingly,
relational database management systems include a locking
facility Which “locks” database records With pending
changes on behalf of one user or process to prevent access
by another user or process.
A classic example involves the sale of seats on an air

plane. TWo potential customers, at different locations, may
be accessing (either directly or through an agent) a database
Which indicates that a particular seat is available. If both
customers then decide to purchase a ticket for the seat, the
possibility exists that an update to the database on behalf of
the ?rst customer indicating that the seat has been sold to the
?rst customer may be overWritten by an update to the
database on behalf of the second customer indicating that the
seat has been sold to the second customer. More speci?cally,
in this situation (Which should not be alloWed to occur in a
practical system) the second customer has been alloWed to
update the database on the basis of information that is no
longer current, instead of being forced to see the most
current information.
As another example, a banking transaction might involve

the transfer of funds from one account to another. Such a
transaction Would require that the funds be subtracted from
the ?rst account, then added to the second. FolloWing the
subtraction step, the data is inconsistent. Only after the funds
have been added to the second account is consistency
reestablished. Only When both steps are complete, should
the records involved in the transaction be accessible to other
application processes.

There are of course many variations of situations Where
such undesirable results can occur When database records
are updated, unless some form of concurrency control is
implemented, such as locking.

Thus, database application programs (comprising SQL
statements) are organiZed to effect units of Work, Which may
also be termed transactions. Transaction management means
ensuring that a set of SQL statements is treated as a unit;
transaction management guarantees either that all of the
SQL statements Within a unit of Work are completed, or that
none is completed. At the beginning of execution of a
sequence of program statements that de?ne a unit of Work,
the locking facility locks database records With pending
changes to prevent access by any other program or user.
Each logical unit of Work ends With a commit statement, and
the database management system includes a corresponding
commit facility Which effects a commit operation to commit
pending database changes, and release locks. (Alternatively,
a rollback operation may be performed prior to commit, thus
backing out of pending database changes.) Once committed,
database changes are accessible by other application pro
grams and users, and can no longer be backed out by a
rollback. A unit of Work may also be described as a recov
erable sequence of program statements executed by the
database management system for an application program. (A
broader term, Which encompasses other recoverable

US 7,076,480 B2
3

resources used by the application program, in addition to
relational databases, is a unit of recovery. In the context of
the invention, units of work and unit of recovery have the
same meaning.) In the banking transaction example above,
a unit of work begins (and locks are established) when SQL
statements to effect the transaction begin to access the
account records. The unit of work ends when both steps are
complete, and a commit statement is executed. At any time,
an application process has a single unit of work, but the life
of an application process can involve many units of work as
a result of commit or rollback operations.

To avoid unduly causing contention with (i.e. locking out)
other users and application processes, a properly written
database application program is organiZed as a plurality of
logical units of work, each ending with a commit statement.

Correspondingly, if another application program or user
attempts to access a database record which has been locked,
that other database application program or user is required to
wait until the ?rst application program or user has ?nished
its unit of work or transaction, and has allowed the locks to
be released.
Many applications are designed to commit at frequent

intervals during execution. An example is a batch applica
tion designed to perform updates to database tables that are
shared by an online application and where it is desired to
reduce online contention.
A drawback of locking, particularly where an application

program is designed to commit at frequent intervals during
execution, relates to the ef?cient use of computer resources.
Signi?cant processing overhead is associated with a commit
operation, which accordingly is relatively time consuming.
For example, when a commit operation is performed, data
which has been held in relatively fast random access
memory (RAM) is externaliZed by being written to disc, a
much slower operation than accessing random access
memory. An application program could be issuing commit
statements hundreds or even thousands of times per second,
requiring the database management system to spend a rela
tively large percentage of its time performing commit opera
tions.

Thus, there are times when it is desirable to reduce the
frequency at which commit operations are performed on
behalf of an application program, thereby reducing the
amount of time required for the application to execute.

Referring again to an example above, a batch application
may have been designed to perform updates to database
records that are shared by on-line applications. The batch
application program, in an attempt to reduce contention,
would be programmed so as to commit frequently. However,
there may be times when the batch application is executed
during which contention is not a major concern.

In prior versions of the Database AttachTM product, a
“variable commit frequency” feature is implemented, which
accepts a COMMITFREQ parameter. The COMMITFREQ
parameter acts as a frequency divider value by which the
frequency at which commit statements are issued during
program execution is divided to determine a reduced fre
quency at which commit operations are actually performed
by the commit facility. As an example, a COMMITFREQ
parameter value of ten might be employed. Accordingly
only every tenth commit statement issued by the application
program is passed on to the database management system,
and the other nine are suppressed. As a result, application
program execution is speeded up (but at the expense of
potential increased contention as viewed by other applica
tion processes or users).

20

30

35

40

45

50

55

60

65

4
SUMMARY OF THE INVENTION

In embodiments of the invention, an interface between a
relational database application program and a database man
agement system reduces application program execution time
by reducing the number of commit operations performed by
the commit facility. Repeatedly, commit statements issued
by the application program are suppressed until a time
interval based on a time interval parameter has elapsed, and
then the next commit statement issued by the application
program is passed on to the database management system.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 represents an application program;
FIG. 2 is a block diagram of a computer system embody

ing the invention, including the application program of FIG.
1;

FIG. 3 is a program ?owchart representing steps during
the execution of an interface program included in the
computer system of FIG. 2 in one embodiment of the
invention when an application program issues a commit
statement;

FIG. 4 is a program ?owchart representing steps during
the execution of an interface program included in the
computer system of FIG. 2 in a modi?ed embodiment of the
invention when an application program issues a commit
statement;

FIG. 5 is a ?ow chart representing steps during initial
iZation of an alternative embodiment of the invention;

FIG. 6 is a program ?ow chart representing steps during
the execution of an interface program included in the
computer system of FIG. 2 in the alternative embodiment
when an application program issues a commit statement; and

FIG. 7 is a program ?ow chart representing steps during
the execution of an interface program included in the
computer system of FIG. 2 in the alternative embodiment
when a commit statement is passed on to the database
management system; and

FIG. 8 represents a computer usable medium having
computer readable program code means embodied thereon.

DETAILED DESCRIPTION

Referring ?rst to FIG. 1, represented is an application
program 10, written, as an example, in the relational data
base programming language known SQL (Structured Query
Language). In the simpli?ed representation of FIG. 1, SQL
statements are of two types, SQL update statements and SQL
commit statements. The SQL update statements represent
any SQL statements which change a database, such as by
modifying, creating or deleting database records. Thus, the
update statements shown in FIG. 1 update values of records
in a database. By way of example and not limitation, other
SQL statements which make changes to a database are insert
statements, which insert rows into a table, and delete state
ments which delete rows from a table.

The example application program 10 of FIG. 1 includes
three units of work, each beginning with an SQL update
statement, having two additional SQL update statements,
and ending with an SQL commit statement. An arrow 12 in
FIG. 1 represents the SQL statements, including program
commit statements, being passed on one at a time to an
execution environment in a conventional manner. Within
each unit of work in the example of FIG. 1, the three SQL
update statements de?ne a recoverable sequence of program
statements which are not made permanent until the commit

US 7,076,480 B2
5

statement is executed by the database management system.
In other Words, database changes are pending. As discussed
hereinabove, the database management system locks the
database records accessed by the SQL update statements
Within each unit of Work, and releases the locks When the
commit statement is executed by the database management
system. It may be that a rollback occurs, backing out of the
pending updates, prior to the pending database changes
being committed.

FIG. 2 represents an overall computer system and execu
tion environment 20, Which may be distributed, and Which
includes conventional elements such as memory for storing
program instructions and data, as Well CPUs. Included is a
database management system 22, Which may take the form
of a database manager such as DB2. The database manage
ment system 22 manages a relational database 24 including,
in conventional manner, a plurality of tables storing data
organiZed as roWs and columns.

The database management system 22 includes a locking
facility 26 Which locks records in the database 24 With
pending changes by one program to prevent access by any
other program or user. The database management system 22
additionally includes a commit facility 28 Which executes
commit statements by committing pending database
changes, and releasing locks established by the locking
facility 26.

The database management system 22 additionally
includes a facility 30 by Which application programs can
connect to the database management system 22. In the
representative example of DB2, the facility 30 used for
connecting is the Call Attachment Facility 30. It Will be
appreciated that other terminology and details Will be
involved When connecting to or interfacing With other
database management systems.

The database management system 22 comprises softWare
that runs on a server. Permanent records of the database 24
are stored on non-volatile media such as one or more disc

drives. As a practical matter, in the interests of execution
speed, selected database records, particularly those With
pending changes, are stored in RAM. Thus, one of the effects
of a commit operation is the Writing of database records
from RAM to disc, sometimes referred to as externaliZing
the data.

Also represented in FIG. 2 are tWo jobs 40 and 42 (JOB
1 and JOB 2) that are connected to the database management
system 22, and are accessing the database 24. The tWo jobs
40 and 42 are representative of many potential jobs that may
be connected to the database management system 22. Alter
natively, a single job may be connected. In the representation
of FIG. 2, the tWo jobs 40 and 42 (JOB 1 and JOB 2) have
identical representations. Accordingly, the description beloW
generally refers only to job 40 (JOB 1). The tWo jobs 40 and
42 (JOB 1 and JOB 2) typically are running on different
client computers.

Within job 40 (JOB 1) tWo application programs 44 and
46 are represented, labeled “Application Program A” and
“Application Program B,” respectively. Each of the appli
cation programs 44 and 46 takes the form of the FIG. 1
application program 10. During execution, the application
programs 44 and 46 (Application Program A and Applica
tion Program B) issue program statements, including pro
gram commit statements, as represented by lines 48 and 50
labeled “SQL, Including Program Commit Statements.”

Functioning as an interface betWeen the application pro
grams 44 and 46 and the database management system 22,
in particular, the Call Attachment Facility 30 of the database
management system 22, is an interface program 52. The

20

25

30

35

40

45

50

55

60

65

6
interface program 52 may comprise the product knoWn as
Database AttachTM, available from Softbase Systems, Inc.,
of Asheville, NC, aspects of Which are disclosed in Blair
US. Pat. No. 5,369,764. The Database AttachTM product is
periodically revised or upgraded as features, for example
embodying the invention, are added. The interface program
52 in general handles execution of all program SQL state
ments, passing SQL statements on to the database manage
ment system 22 via the Call Attachment Facility 30.
The overall purpose of the Database AttachTM product

Which may be employed as the interface program 52 in FIG.
2 is to alloW batch programs that access DB2 to execute
natively, rather than under batch TSO. The Database
AttachTM product can also include additional capabilities,
such as an SQL monitoring facility, Which is a facility for
recording performance information about the execution of
SQL statements from a batch application program.
The interface program 52 accepts a number of parameters

via a parameter input 54. In the speci?c example of the
Database AttachTM product for accessing DB2, the param
eters are retrieved from the DBAIN DD ?le. This is an
eighty-byte record length ?le, and may be disc or in-stream
input. In embodiments of the invention, valid parameters
accepted via the parameter input 54 (ie retrieved from the
DBAIN DD ?le) include the keyWords ALLOWMODIFY,
COMMITFREQ and TIME.
The interface program 52 is Written so as to incorporate a

modify facility 56 via Which modify job commands may be
accepted from a system operator during execution, as indi
cated by arroW 58. The Database AttachTM product, When
ALLOWMODIFY (YES) is coded in the DBAIN input
stream, alloWs the Operator Modify Command to be used to
modify the commit frequency While an application is execut
ing. FREQ and TIME inputs are accepted in this manner,
corresponding respectively to the COMMITFREQ and
TIME parameters Which may be input via the parameter
input 54. Operator Modify Commands While an application
program is executing override the corresponding parameter
input via the parameter input 54.
As indicated by arroW 60, the interface program 52

executing Within job 40 (JOB 1) passes on to the database
management system 22 via the Call Attachment Facility
SQL statements from the application programs 44 and 46
(Application Program A and Application Program B),
including selected commit statements. Likewise, as indi
cated by arroW 62, SQL statements from application pro
grams executing With job 42 (JOB 2), including selected
commit statements, are passed on to the database manage
ment system 22 via the Call Attachment Facility 30.
The COMMITFREQ parameter may be employed to

establish a commit frequency divider value n by Which the
frequency at Which commit statements are issued by an
application program, such as the application program 44
(Application Program A) is divided to determine a reduced
frequency at Which commit statements are passed as indi
cated by arroW 60 to the database management system 44,
and thus to determine the frequency at Which commit
operations are actually performed by the commit facility 28.
As an example, if COMMITFREQ (25) is coded as a
parameter on the parameter input 54 (eg the DBAIN DD
?le), then the interface program 52 alloWs a commit opera
tion to be performed only every tWenty-?fth time the appli
cation program 44 issues a commit statement. HoWever,
When employing the COMMITFREQ parameter (despite the
implication of its name) there is no particular Way to specify
reliably hoW frequently commit operations are to occur in
terms of commits per second.

US 7,076,480 B2
7

Thus, for example, a database application program 10 or
44 may be running as a batch process at a time When the
database management system 22 is lightly loaded, in other
Words, there are feW other application processes contending
for the same resources. Under such conditions, a commit
frequency divider value n of 100 may be appropriate,
meaning 99 commit statements issued by the application
programs are suppressed (thus causing record locks to be
maintained) for every one that is passed on to the database
management system 22 (alloWing locks to be released).
HoWever, under other conditions in a multitasking environ
ment, When many other application programs or processes
may be contending for the same resources, and the appli
cation program is accordingly executing much more sloWly,
a commit frequency divider value n of 100 may not be
appropriate. The actual elapsed time during Which 99 com
mit statements are suppressed becomes excessive. A commit
frequency divider value n of 10, for example, Would be more
appropriate under conditions at that time.

In embodiments of the invention, the interface program
52 additionally accepts a time interval parameter, Which is
the TIME parameter referred to hereinabove accepted via
the parameter input 54 (eg from the DBAIN DD ?le). In
addition, the TIME parameter may be input as an Operator
Modify Command via the modify facility 56 While an
application program is executing. In speci?c embodiments
disclosed herein, the time interval parameter speci?es (eg
in units of l00ths of a second) a desired time interval
betWeen the actual execution of commit operations by the
commit facility 28 of the database management system 22.
The reciprocal of this time interval is an actual frequency
(e.g. expressed in units of commit operations per second).

Thus, during program execution, and in a repeated opera
tion, commit statements issued by the application program
10 or 44 are suppressed until a time interval based on the
time interval parameter has elapsed, and then the next
commit statement issued by the application program 10 or
44 is passed on to the database management system 22.
These operations are effected by What may be termed a
selection component of the computer system 20.
More particularly, in one embodiment of the invention,

commit statements issued by the application program 10 or
44 are intercepted. As each commit statement is intercepted,
it is determined Whether the time interval has elapsed. The
intercepted commit statement is passed on to the database
management system 22 only if the time interval has elapsed.
A timer may be employed for this purpose. Thus as each
commit statement is intercepted, the timer is queried to
determine Whether a set time interval has elapsed. If the set
time interval has elapsed, the intercepted commit statement
is passed on to the database management system 22, and the
timer is restarted.

In a modi?cation, in addition to the time interval param
eter (e.g. TIME) the COMMITFREQ parameter may be
employed. More particularly, based on a frequency param
eter (e.g. COMMITFREQ) a commit frequency divider
value, herein referred to as a variable n, is determined. The
frequency divider value n is a number by Which the fre
quency at Which commit statements are issued during pro
gram execution is divided to determine a reduced frequency
at Which commit operations are actually performed by the
commit facility, as a minimum frequency. Commit state
ments issued by the application program 10 or 44 are
intercepted. Either the next commit statement issued by the
application program 10 or 44 after the time interval as
described above has elapsed, or the nth commit statement
issued by the application program 10 or 44 since the last

20

25

30

35

40

45

50

55

60

65

8
commit statement has been passed on to the database
management system 22, Whichever occurs ?rst, is passed on
to the database management system 22. All other commit
statements issued by the application program 10 or 44 are
suppressed.
More particularly, in this particular modi?ed embodi

ment, in addition to the timer, a counter is initialiZed and
employed to count commit statements issued by the appli
cation program 10 or 44. Commit statements issued by the
application program 10 or 44 are suppressed until n commit
statements have been counted. The nth commit statement
issued by the application program 10 or 44 is then passed on
to the database management system 22, and the counter is
re-initialiZed.
The operations summarized just above may be imple

mented as described hereinbeloW With reference to the
representative ?oW charts of FIGS. 3 and 4, Which are
exemplary only, and Which represent an embodiment of the
selection component. The operations represented in the How
charts of FIGS. 3 and 4 are part of the interface program 52.

FIG. 3 is a ?owchart 70 representing a routine executed
each time an application program, such as the application
program 44 (Application Program A) issues a commit state
ment. Accordingly, the FIG. 3 routine represents the inter
cepting of a commit statement, and subsequent actions
taken. Although other timer facilities may be employed,
including user-provided facilities, in an exemplary embodi
ment the FIG. 3 routine employs a count doWn timer facility
that is part of the MVS (Multiple Virtual Storage) compo
nent of the IBM OS/390 operating system. Use of this count
doWn timer facility requires far less execution time than
retrieving system clock time, converting, and comparing to
a previously-saved time Would. TWo programming state
ments are involved, STIMER and TTIMER. An STIMER
statement speci?es a time duration or interval and starts the
count doWn timer counting doWn to Zero. At any time, the
TTIMER statement retrieves the time remaining. At any
time after the timer has counted doWn to Zero, meaning the
set time has elapsed, the TTIMER command returns a time
remaining of Zero.
A PROGRAM COMMIT STATEMENT entry point is

referenced 72. In box 74 the count doWn timer is queried. In
an exemplary embodiment, this query employs a TTIMER
statement. In decision box 76 it is determined Whether any
time remains. If the ansWer is “yes,” then branch 78 is taken
and the routine exits at 80. The particular commit statement
issued by the application program 10 or 44 is not passed on
to the database management system 22. In other Words, the
particular program commit statement is suppressed.

If, on the other hand, it is determined in decision box 76
that there is “no” time remaining, then branch 82 is taken. In
the exemplary embodiment, the TTIMER statement has
returned a value of Zero. (If an STIMER statement to start
the count doWn timer has not previously been executed,
TTIMER initially returns a value of Zero. The very ?rst
commit statement issued by the application program 10 or
44 and intercepted as represented in FIG. 3 results in branch
82 being taken, results in that ?rst commit statement being
passed on to the database management system 22 as
described next beloW, and results in the count doWn timer in
effect being initialiZed to the time interval based on the time
interval parameter.)

Thus, execution proceeds to box 84, Where the program
commit statement is passed on to the database management
system 22, as indicated by data How arroW 86, Which
corresponds to a communication on line 60 of FIG. 2.

US 7,076,480 B2

In box 88, the count down timer is again started (or started
initially, if the particular commit statement is the ?rst
commit statement issued by the application program 10 or
44) with the time interval based on the time interval param
eter, eg the TIME parameter, in units of l00ths of a second.
The FIG. 3 routine then exits at 90.

FIG. 4 is a ?owchart 100 representing a modi?cation to
the routine represented in FIG. 3. In the modi?cation of FIG.
4, the COMMITFREQ parameter is employed, in addition to
the TIME parameter. In FIG. 4, the COMMITFREQ param
eter is used directly as the commit frequency divider value
n. However, in other embodiments, a different mathematical
relationship may be de?ned between the COMMITFREQ
parameter accepted via the FIG. 2 parameter input 54 and
the commit frequency divider value n; or between the FREQ
input accepted as an Operator Modify Command via the
FIG. 2 modify facility 56 and the commit frequency divider
value n.

In FIG. 4, an incrementing counter employing the variable
COUNTER is employed to count commit statements issued
by the application program 10 or 44. However, a decrement
ing counter could alternatively be employed, as is repre
sented in the embodiment of FIG. 6, described hereinbelow.
An optional initialization routine (not shown) is executed
one time, at the beginning of execution of an application
program, and initialiZes the variable COUNTER to Zero. If
the initialiZation routine (not shown) is not employed, the
variable COUNTER is inherently initialiZed by the FIG. 4
routine itself once it has been called one or more times.

A PROGRAM COMMIT STATEMENT entry point is
referenced 102. In Box 104 COUNTER is incremented.
Decision box 106 determines whether COUNTER has
reached the value of the frequency divider value n (which in
this embodiment simply equals the value of the COMMIT
FREQ parameter).

If the answer in decision box 106 is “yes,” then branch
108 is taken. In box 110, the program commit statement is
passed on to the database management system 22, as indi
cated by data ?ow arrow 112, which corresponds to a
communication on line 60 of FIG. 2. In box 114 the variable
COUNTER is re-set to Zero (or perhaps set to Zero for the
?rst time if no initialiZation routine was employed). The
FIG. 4 routine then exits at 116.

If the answer in decision box 106 is “no,” then branch 118
is taken. Following branch 118, the ?owchart 100 of FIG. 4
is similar to the ?owchart 70 of FIG. 3. Thus, in box 120
(which corresponds to FIG. 3 box 74) the count down timer
is queried. In an exemplary embodiment, this query employs
a TTIMER statement. In decision box 122 it is determined
whether any time remains. If the answer is “yes,” then
branch 124 is taken and the routine exits at 124. The
particular commit statement issued by the application pro
gram 10 or 44 is not passed on to the database management
system 22. In other words, the particular program commit
statement is suppressed.

If, on the other hand, it is determined in decision box 122
that there is “no” time remaining, then branch 128 is taken.
In the exemplary embodiment, the TTIMER statement has
returned a value of Zero. Execution proceeds to box 130,
where the program commit statement is passed on to the
database management system 22, as indicated by data ?ow
arrow 132, which corresponds to a communication on line
60 of FIG. 2. In box 134, the count down timer is again
started with the time interval based on the time interval
parameter, eg the TIME parameter, in units of l00ths of a

20

25

30

35

40

45

50

55

60

65

10
second. In box 136 (which has no corresponding box in FIG.
3), the variable counter is re-set to Zero. The routine exits at
138.

In the particular approach represented in FIG. 4 where
both the TIME and the COMMITFREQ parameters are
employed, the variable COUNTER employed in combina
tion with the COMMITFREQ parameter is reset (boxes 114
and 136) every time a commit statement issued by the
application program 10 or 44 is passed on to the database
management system 22 (boxes 110 and 130). However, the
timer employed in combination with the TIME parameter is
reset (box 134) only when a commit statement issued by the
application program is passed on to the database manage
ment system 22 (box 130) as a result of the time interval
elapsing.

In an alternative embodiment, described hereinbelow with
reference to FIGS. 5, 6 and 7, the count down timer is not
employed. Instead, what may referred to as a virtual COM
MITFREQ parameter is determined, in particular a fre
quency divider value n is determined based on the time
interval parameter TIME, so that commit operations are
performed at approximate intervals as speci?ed by the TIME
parameter. When the TIME parameter is thus employed, the
integer commit frequency divider value n is not the value of
actual COMMITFREQ parameter. Thus in this alternative
embodiment, only the TIME parameter is employed, not the
COMMITFREQ parameter. FIGS. 5, 6 and 7 represent
another embodiment of a selection component that sup
presses commit statements issued by the application pro
gram 10 or 44 until a time interval based on a time interval
parameter has elapsed, and passes the next commit state
ment issued by the application program 44 on to the database
management system 22. FIGS. 5, 6 and 7, and in particular
FIG. 7, represent a divisor-determining component that
determines, based on a time interval parameter, a commit
frequency divider value n by which the frequency at which
commit statements are issued during program execution is
divided to determine a reduced frequency at which commit
operations are actually performed by the commit facility.

In the alternative embodiment, even with the same time
interval parameter value, the commit frequency divider
value n may end up being quite different between runs of the
database application program as a batch process, depending
upon how many other application processes are contending
for resources in a multitasking environment. Moreover,
when embodiments of the invention are employed, the
commit frequency divider value n may vary dynamically
during execution.

In the alternative embodiment, the commit frequency
divider value n cannot be determined outside an actual
execution environment. Thus, during execution, an initial
value of n is iteratively re?ned until commit statements are
passed on to the database management system 22 at actual
intervals approximating a desired interval speci?ed by the
time interval parameter TIME. In an exemplary embodi
ment, the TIME parameter is any number between 1 and
99999, and speci?es a time interval in hundredths of a
second.

Moreover, the commit frequency divider value n is peri
odically re?ned during program execution so as to maintain
a state in which commit statements are passed on to the
database management system 22 at actual intervals approxi
mating the desired intervals speci?ed by the time interval
parameter TIME.
More particularly, in an exemplary alternative embodi

ment the integer commit frequency divider value n is
determined by arbitrarily setting an initial value, such as

US 7,076,480 B2
11

n:2, and then iteratively re?ning the initial value until
commit statements are passed on to the database manage
ment system 22 at actual intervals approximating the desired
intervals speci?ed by the time interval parameter.

During program execution, an iterative process for re?n
ing an initial value of n comprises repeatedly determining
the actual interval betWeen successive commit statements
passed on to the database management system 22, and
comparing the actual interval to the desired interval. In the
event the actual interval is shorter than the desired interval,
the value of n is increased. In the event the actual interval is
longer than the desired interval, the value of n is decreased.
Any suitable algorithm may be employed for determining
the amount by Which n is increased or decreased.

Similarly, an iterative process for periodically re?ning the
value of n during program execution comprises repeatedly
determining the actual interval betWeen successive commit
statements passed on to the database management system
22, and comparing the actual interval to the desired interval.
In the event the actual interval is shorter than the desired
interval, the value of n is increased. In the event the actual
interval is longer than the desired interval, the value of n is
decreased. Any suitable algorithm may be employed for
determining the amount by Which n is increased or
decreased.

In alternative embodiments, during program execution a
process of passing on to the database management system 22
every nth commit statement issued by the application pro
gram 10 or 44 employs a counter. The counter is initialiZed,
and is then employed to count commit statements issued by
the application program. Based a count maintained by the
counter, commit statements issued by the application pro
gram are suppressed until n commit statements have been
counted. Then, the nth commit statement issued by the
application program 10 or 44 is passed on to the database
management system 22. After that, the counter is re-initial
iZed to the current value of n.

The operations summarized just above may be imple
mented as described hereinbeloW With reference to the
representative ?oW charts of FIGS. 5, 6 and 7, Which are
exemplary only. The operations represented in the How
charts of FIGS. 5, 6 and 7 are part of the FIG. 2 interface
program 52.

FIG. 5 is a How chart 150 representing an initialiZation
routine. The FIG. 5 routine is executed one time, at the
beginning of execution of an application program 10 or 44.
An INITIALIZE entry point is referenced 152. In box 154,
an initial value of a variable N:2 is established for the
commit frequency divider value n (Which corresponds to the
COMMITFREQ parameter that is not used When embodi
ments of the invention are invoked). In box 156, the value
of COUNTER is initialiZed to the value of n. An alternative
initialiZation statement Would be COUNTER:2. In box 158,
the value of a variable START_TIME is initialiZed to the
value of the system time, represented as CURRENT_TIME,
retrieved from the computer operating system in a conven
tional manner. Finally, the FIG. 3 initialiZation routine exits
at 160.

FIG. 6 is a How chart 170 for a routine executed each time
an application program 10 or 44, such as the application
program 44 (Application Program A) issues a commit state
ment. Although the routine represented by the How chart 170
employs a decrementing counter to count commit statements
issued by the application program, it Will be appreciated that
With a slight modi?cation an incrementing counter may be
employed, such as in the example of FIG. 4 above.

20

25

30

35

40

45

50

55

60

65

12
A PROGRAM COMMIT STATEMENT entry point is

referenced 172. In box 174, the COUNTER variable is
decremented. In decision box 176 it is determined Whether
the variable COUNTER has reached Zero or not. If the
ansWer is “no,” then branch 178 is taken, and the routine
exits at 180. The commit statement is not passed on to the
database management system 22, since n commit statements
have not yet been issued by the application program. In other
Words, the particular program commit statement is sup
pressed.

If, on the other hand, in decision box 176 it is determined
that, “yes” the COUNTER variable has decremented to Zero,
then branch 182 is taken. Execution proceeds to box 184,
Where the program commit statement is passed on to the
database management system 22, as indicated by data?oW
arroW 186, Which corresponds to a communication on line
60 of FIG. 2.

Then, in box 188, the COUNTER variable is re-initialiZed
to the value of n, Which is the frequency divider value. At
this point, the value of n (variable N) may or may not still
be equal to 2 as initialiZed in FIG. 5, depending upon
Whether n has been re?ned as described next With reference
to FIG. 7. Finally, the FIG. 6 routine exits at 190.

FIG. 7 is a How chart 200 representing a routine for
re?ning the variable N, Which corresponds to the commit
frequency divider value n, either initially (starting from
N:2) or at some subsequent time during program execution
to re?ne the value of n. During execution, the FIG. 7 routine
is called every time the FIG. 6 routine selects and passes a
commit statement on to the database management system 22
in box 90. Thus, the FIG. 7 routine is called many times and
iteratively re?nes the value of the variable N. Moreover, the
value of the variable N is dynamically adjusted or re?ned
during program execution as conditions change, in the
execution environment for example. FIG. 7, accordingly
represents a divisor-determining component that determines,
based on a time interval parameter, a commit frequency
divider value n by Which the frequency at Which commit
statements are issued during program execution is divided to
determine a reduced frequency at Which commit operations
are actually performed by the commit facility.
The FIG. 7 routine is entered at 202, labeled DBMS

COMMIT STATEMENT. In box 204 the elapsed time since
the previous commit operation passed on to the database
management system 22 is determined. Thus, the variable
ELAPSED_TIME is set equal to the system time (CUR
RENT_TIME) minus the START_TIME variable that Was
?rst initialiZed during execution of the FIG. 5 How chart. In
box 206, the START_TIME variable is reinitialiZed to the
current system time, CURRENT_TIME.

Then, in decision box 208, the ELAPSED_TIME variable
is compared to a desired TIME_INTERVAL, Which corre
sponds to the TIME parameter. If the value of ELAPSED
_TIME is suf?ciently close to TIME_INTERVAL, then the
decision is “Within range” 120, and branch 210 is taken. The
routine then exits at 212 With no adjustment to the value of
the variable N.

If, hoWever, commit operations are occurring more fre
quently than they should based on the value of the desired
time interval parameter TIME, in decision box 208 it is
determined that ELAPSED_TIME is less than
TIME_INTERVAL minus a threshold, and branch 214 is
taken. In box 216, the value of N is increased. The routine
then exits at 218.
On the other hand, if commit operations are occurring less

frequently than they should based on the value of the desired
time interval parameter TIME, in decision box 208 it is

US 7,076,480 B2
13

determined that ELAPSED_TIME is greater than
TIME_INTERVAL plus a threshold, and branch 220 is
taken. In box 222, the value of the variable N is decreased.
The routine then exits at 224.

Embodiments of the invention thus include methods as
described above for reducing application program execution
time by reducing the number of commit operations per
formed by the commit facility, based on a time interval
parameter. Embodiments of the invention also include pro
viding for the above-described methods to be implemented.
Embodiments of the invention further include computer
systems in Which the above-described methods are imple
mented.

FIG. 8 depicts, as an article of manufacture, a medium
230 on Which computer readable program code means to
effect the above-described methods is recorded or embodied,
in addition to computer readable program code means
comprising the FIG. 2 interface program 22 itself. The
medium 230 may comprise any suitable medium, such as a
?oppy disc, magnetic tape, CD-ROM or other suitable
storage medium.
Embodiments of the invention may also be distributed by

Way of doWnload from an intemet Web site, or by e-mail
attachment.

While the novel features of the invention have been
illustrated and described herein, it is realiZed that numerous
modi?cations and changes Will occur to those skilled in the
art. It is therefore to be understood that the appended claims
are intended to cover all such modi?cations and changes that
fall Within the true spirit and scope of the invention.
What is claimed is:
1. In an interface betWeen a relational database applica

tion program and a database management system, the inter
face selectively passing statements issued by the relational
database application program on to the database manage
ment system, the relational database application program
including commit statements, and the database management
system including a commit facility to effect a commit
operation to commit pending database changes and release
locks, a method of reducing application program execution
time by reducing the number of commit operations per
formed by the commit facility, said method comprising:

based on a frequency parameter, establishing a commit
frequency divider value, herein referred to as a variable
n, by Which the frequency at Which commit statements
are issued during program execution is divided to
determine a reduced frequency at Which commit opera
tions are actually performed by the commit facility, as
a minimum frequency; and

repeatedly, intercepting and suppressing commit state
ments issued by the relational database application
program until either a time interval based on a time
interval parameter has elapsed, or the nth commit
statement issued by the relational database application
program since the last commit statement Was passed on
to the database management system has been issued by
the relational database application program, Whichever
occurs ?rst, and then correspondingly passing either the
next commit statement issued by the relational database
application program or that nth commit statement on to
the database management system.

2. The method of claim 1, Wherein said step of passing on
to the database management system the nth commit state
ment issued by the relational database application program
since the last commit statement Was passed on to the
database management system comprises:

initialiZing a counter;

20

25

30

35

40

45

50

55

60

65

14
employing the counter to count commit statements issued

by the relational database application program;
passing on to the database management system the nth

commit statement issued by the relational database
application program; and

re-initialiZing the counter Whenever a commit statement is
passed on to the database management system.

3. In an interface betWeen a relational database applica
tion program and a database management system, the inter
face selectively passing statements issued by the relational
database application program on to the database manage
ment system, the relational database application program
including commit statements, and the database management
system including a commit facility to effect a commit
operation to commit pending database changes and release
locks, a method of reducing relational database application
program execution time by reducing the number of commit
operations performed by the commit facility, said method
comprising repeatedly suppressing commit statements
issued by the relational database application program until a
time interval based on a time interval parameter has elapsed,
and passing the next commit statement issued by the rela
tional database application program on to the database
management system, by:

based on the time interval parameter, determining a
commit frequency divider value, herein referred to as a
variable n, by Which the frequency at Which commit
statements are issued during program execution is
divided to determine a reduced frequency at Which
commit operations are actually performed by the com
mit facility; and

passing on to the database management system every nth
commit statement issued by the relational database
application program.

4. The method of claim 3, Wherein said step of determin
ing the commit frequency divider value n comprises itera
tively re?ning an initial value of n during program execution
until commit statements are passed on to the database
management system at actual intervals approximating a
desired interval speci?ed by the time interval parameter.

5. The method of claim 3, Wherein said step of passing on
to the database management system every nth commit
statement issued by the relational database application pro
gram comprises:

initialiZing a counter;
employing the counter to count commit statements issued

by the relational database application program;
suppressing commit statements issued by the relational

database application program until n commit state
ments have been counted, and then passing on to the
database management system the nth commit statement
issued by the relational database application program;
and

re-initialiZing the counter.
6. The method of claim 4, Which further comprises

periodically re?ning the commit frequency divider value n
during program execution so as to maintain a state in Which
commit statements are passed on to the database manage
ment system at actual intervals approximating a desired
interval speci?ed by the time interval parameter.

7. The method of claim 4, Wherein said step of iteratively
re?ning an initial value of n during program execution
comprises repeatedly:

determining the actual interval betWeen successive com
mit statements passed on to the database management
system, and comparing the actual interval to the desired
interval; and

US 7,076,480 B2
15

in the event the actual interval is shorter than the desired
interval, increasing the value of n, and, in the event the
actual interval is longer than the desired interval,
decreasing the value of n.

8. The method of claim 4, Wherein said step of passing on
to the database management system every nth commit
statement issued by the relational database application pro
gram comprises:

initialiZing a counter;
employing the counter to count commit statements issued
by the relational database application program;

suppressing commit statements issued by the relational
database application program until n commit state
ments have been counted, and then passing on to the
database management system the nth commit statement
issued by the relational database application program;
and

re-initialiZing the counter.
9. The method of claim 6, Wherein said step of periodi

cally re?ning the value of n during program execution
comprises repeatedly:

determining the actual interval betWeen successive com
mit statements passed on to the database management
system, and comparing the actual interval to the desired
interval; and

in the event the actual interval is shorter than the desired
interval, increasing the value of n, and, in the event the
actual interval is longer than the desired interval,
decreasing the value of n.

10. For an interface betWeen a relational database appli
cation program and a database management system, the
interface selectively passing statements issued by the rela
tional database application program on to the database
management system, the relational database application
program including commit statements, and the database
management system including a commit facility to effect a
commit operation to commit pending database changes and
release locks, a method comprising providing for:

based on a frequency parameter, establishing a commit
frequency divider value, herein referred to as a variable
n, by Which the frequency at Which commit statements
are issued during program execution is divided to
determine a reduced frequency at Which commit opera
tions are actually performed by the commit facility, as
a minimum frequency; and

repeatedly, intercepting and suppressing commit state
ments issued by the relational database application
program until either a time interval based on a time
interval parameter has elapsed, or the nth commit
statement issued by the relational database application
program since the last commit statement Was passed on
to the database management system has been issued by
the relational database application program, Whichever
occurs ?rst, and then correspondingly passing either the
next commit statement issued by the relational database
application program or that nth commit statement on to
the database management system.

11. The method of claim 10, Wherein passing on to the
database management system the nth commit statement
issued by the relational database application program since
the last commit statement Was passed on to the database
management system comprises providing for:

initialiZing a counter;
employing the counter to count commit statements issued
by the relational database application program;

20

25

30

35

40

45

50

55

60

16
passing on to the database management system the nth

commit statement issued by the relational database
application program; and

re-initialiZing the counter Whenever a commit statement is
passed on to the database management system.

12. For an interface betWeen a relational database appli
cation program and a database management system, the
interface selectively passing statements issued by the rela
tional database application program on to the database
management system, the relational database application
program including commit statements, and the database
management system including a commit facility to effect a
commit operation to commit pending database changes and
release locks, a method comprising providing for repeatedly
suppressing commit statements issued by the relational
database application program until a time interval based on
a time interval parameter has elapsed by:

based on the time interval parameter, determining a
commit frequency divider value, herein referred to as a
the variable n, by Which the frequency at Which commit
statements are issued during program execution is
divided to determine a reduced frequency at Which
commit operations are actually performed by the com
mit facility; and

passing on to the database management system every nth
commit statement issued by the relational database
application program.

13. The method of claim 12, Wherein determining the
commit frequency divider value n comprises providing for
iteratively re?ning an initial value of n during program
execution until commit statements are passed on to the
database management system at actual intervals approxi
mating a desired interval speci?ed by the time interval
parameter.

14. The method of claim 12, Wherein passing on to the
database management system every nth commit statement
issued by the relational database application program com
prises:

providing for initialiZing a counter;
providing for employing the counter to count commit

statements issued by the relational database application
Program;

providing for suppressing commit statements issued by
the relational database application program until n
commit statements have been counted, and then pass
ing on to the database management system the nth
commit statement issued by the relational database
application program; and

providing for re-initialiZing the counter.
15. The method of claim 13, Which further comprises

providing for periodically re?ning the commit frequency
divider value n during program execution so as to maintain
a state in Which commit statements are passed on to the
database management system at actual intervals approxi
mating a desired interval speci?ed by the time interval
parameter.

16. The method of claim 13, Wherein providing for
iteratively re?ning an initial value of n during program
execution comprises providing for repeatedly:

determining the actual interval betWeen successive com
mit statements passed on to the database management
system, and comparing the actual interval to the desired
interval; and

in the event the actual interval is shorter than the desired
interval, increasing the value of n, and, in the event the
actual interval is longer than the desired interval,
decreasing the value of n.

US 7,076,480 B2
17

17. The method of claim 13, wherein passing on to the
database management system every nth commit statement
issued by the relational database application program com
prises:

providing for initialiZing a counter;
providing for employing the counter to count commit

statements issued by the relational database application
program;

providing for suppressing commit statements issued by
the application program until n commit statements have
been counted, and then passing on to the database
management system the nth commit statement issued
by the relational database application program; and

re-initialiZing the counter.
18. The method of claim 15, Wherein providing for

periodically re?ning the value of n during program execu
tion comprises providing for repeatedly:

determining the actual interval betWeen successive com
mit statements passed on to the database management
system, and comparing the actual interval to the desired
interval; and

in the event the actual interval is shorter than the desired
interval, increasing the value of n, and, in the event the
actual interval is longer than the desired interval,
decreasing the value of n.

19. A computer system for interfacing betWeen a rela
tional database application program that includes commit
statements and a database management system that includes
a commit facility to effect a commit operation to commit
pending database changes and release locks, said computer
system comprising
memory for storing program instructions and data; and
a selection component that
based on a frequency parameter, establishes a commit

frequency divider value, herein referred to as a variable
n, by Which the frequency at Which commit statements
are issued during program execution is divided to
determine a reduced frequency at Which commit opera
tions are actually performed by the commit facility, as
a minimum frequency; and

repeatedly, intercepts and suppresses commit statements
issued by the relational database application program
either a time interval based on a time interval parameter
has elapsed, or the nth commit statement issued by the
relational database application program since the last
commit statement Was passed on to the database man
agement system has been issued by the relational
database application program, Whichever occurs ?rst,
and then correspondingly passing either the next com
mit statement issued by the relational database appli
cation program or that nth commit statement on to the
database management system.

20. The computer system of claim 19, Wherein said
selection component:

initialiZes a counter

employs the counter to count commit statements issued by
the relational database application program;

suppresses commit statements issued by the relational
database application program until n commit state
ments have been counted, and then passes on to the
database management system the nth commit statement
issued by the relational database application program;
and

re-initialiZes the counter Whenever a commit statement is
passed on to the database management system.

21. A computer system for interfacing betWeen a rela
tional database application program that includes commit
statements and a database management system that includes

5

20

25

30

35

40

50

60

65

18
a commit facility to effect a commit operation to commit
pending database changes and release locks, said computer
system comprising memory for storing program instructions
and data, and a selection component that suppresses commit
statements issued by the relational database application
program until a time interval based on a time interval
parameter has elapsed, and passes the next commit state
ment issued by the relational database application program
on to the database management system, Wherein

said selection component includes a divisor-determining
component that determines, based on a time interval
parameter, a commit frequency divider value, herein
referred to as a variable n, by Which the frequency at
Which commit statements are issued during program
execution is divided to determine a reduced frequency
at Which commit operations are actually performed by
the commit facility; and Wherein

said selection component passes on to the database man
agement system every nth commit statement issued by
the relational database application program.

22. The computer system of claim 21, Wherein said
divisor-determining component iteratively re?nes an initial
value of n during program execution until commit state
ments are passed on to the database management system at
actual intervals approximating a desired interval speci?ed by
the time interval parameter.

23. The computer system of claim 22, Wherein said
divisor-determining component periodically re?nes the
commit frequency divider value n during program execution
so as to maintain a state in Which commit statements are

passed on to the database management system at actual
intervals approximating a desired interval speci?ed by the
time interval parameter.

24. The computer system of claim 22, Wherein said
divisor-determining component repeatedly:

determines the actual interval betWeen successive commit
statements passed on to the database management
system, and compares the actual interval to the desired
interval; and

in the event the actual interval is shorter than the desired
interval, increases the value of n, and, in the event the
actual interval is longer than the desired interval,
decreases the value of n.

25. The computer system of claim 22, Wherein said
selection component:

initialiZes a counter

employs the counter to count commit statements issued by
the relational database application program;

suppresses commit statements issued by the relational
database application program until n commit state
ments have been counted, and then passes on to the
database management system the nth commit statement
issued by the relational database application program;
and

re-initialiZes the counter.
26. The computer system of claim 22, Wherein said

selection component:
initialiZes a counter

employs the counter to count commit statements issued by
the relational database application program;

suppresses commit statements issued by the relational
database application program until n commit state
ments have been counted, and then passes on to the
database management system the nth commit statement
issued by the relational database application program;
and

re-initialiZes the counter.

US 7,076,480 B2
19

27. The computer system of claim 23, wherein said
divisor-determining component repeatedly:

determines the actual interval betWeen successive commit
statements passed on to the database management
system, and compares the actual interval to the desired
interval; and

in the event the actual interval is shorter than the desired
interval, increases the value of n, and, in the event the
actual interval is longer than the desired interval,
decreases the value of n.

28. An article of manufacture comprising a computer
usable medium having computer readable program code
means embodied thereon for providing an interface betWeen
a relational database application program that includes com
mit statements and a database management system that
includes a commit facility to effect a commit operation to
commit pending database changes and release locks,
Wherein said computer readable program code means in said
article of manufacture:

causes to be established, based on a frequency parameter,
a commit frequency divider value, herein referred to as
a variable n, by Which the frequency at Which commit
statements are issued during program execution is
divided to determine a reduced frequency at Which
commit operations are actually performed by the com
mit facility, as a minimum frequency; and

repeatedly, causes commit statements issued by the rela
tional database application program to be suppressed
and then causes either the next commit statement issued
by the relational database application program after a
the time interval based on a time interval parameter has
elapsed, or the nth commit statement issued by the
relational database application program since the last
commit statement Was passed on to the database man
agement system, Whichever occurs ?rst, to be passed on
to the database management system.

29. The article of manufacture of claim 28, Wherein said
computer readable program code means that causes the nth
commit statement issued by the relational database applica
tion program since the last commit statement Was passed on
to the database management system to be passed on to the
database management system:

causes a counter to be initialiZed;
causes the counter to be employed to count commit

statements issued by the relational database application
program;

causes commit statements issued by the relational data
base application program to be suppressed until n
commit statements have been counted, and then causes
the nth commit statement issued by the relational
database application program passing on to the data
base management system; and

then causes the counter to be-initialiZed.
30. An article of manufacture comprising
a computer usable medium having computer readable
program code means embodied thereon for providing
an interface betWeen a relational database application
program that includes commit statements and a data
base management system that includes a commit facil
ity to effect a commit operation to commit pending
database changes and release locks, said computer
readable program code means in said article of manu
facture comprising means for repeatedly causing com
mit statements issued by the relational database appli
cation program to be suppressed until a time interval
based on a time interval parameter has elapsed, and
causing the next commit statement issued by the rela

20

25

30

35

40

50

55

60

65

20
tional database application program to be passed on to
the database management system by:

causing to be determined, based on the time interval
parameter, a commit frequency divider value, herein
referred to as the a variable n, by Which the frequency
at Which commit statements are issued during program
execution is divided to determine a reduced frequency
at Which commit operations are actually performed by
the commit facility; and

causing every nth commit statement issued by the rela
tional database application program to be passed on to
the database management system.

31. The article of manufacture of claim 30, Wherein said
computer readable program code means causes the commit
frequency divider value n to be determined by causing an
initial value of n to be iteratively re?ned during program
execution until commit statements are passed on to the
database management system at actual intervals approxi
mating a desired interval speci?ed by the time interval
parameter.

32. The article of manufacture of claim 30, Wherein said
computer readable program code means causes every nth
commit statement issued by the relational database applica
tion program to be passed on to the database management
system by:

causing a counter to be initialiZed;
causing the counter to be employed to count commit

statements issued by the relational database application
Program;

causing commit statements issued by the relational data
base application program to be suppressed until n
commit statements have been counted, and then causes
the nth commit statement issued by the relational
database application program to be passed on to the
database management system; and

then causing the counter to be re-initialiZed.
33. The article of manufacture of claim 31, Wherein said

computer readable program code means causes the commit
frequency divider value n to be determined by causing the
value of n periodically to be iteratively re?ned during
program execution so as to maintain a state in Which commit
statements are passed on to the database management sys
tem at actual intervals, approximating a desired interval
speci?ed by the time interval parameter.

34. The article of manufacture of claim 31, Wherein said
computer readable program code means causes an initial
value of n to be iteratively re?ned during program execution
by repeatedly:

determining the actual interval betWeen successive com
mit statements passed on to the database management
system, and comparing the actual interval to the desired
interval; and

in the event the actual interval is shorter than the desired
interval, increasing the value of n, and, in the event the
actual interval is longer than the desired interval,
decreasing the value of n.

35. The article of manufacture of claim 31, Wherein said
computer readable program code means causes every nth
commit statement issued by the relational database applica
tion program to be passed on to the database management
system by:

causing a counter to be initialiZed;
causing the counter to be employed to count commit

statements issued by the relational database application
Program;

causing commit statements issued by the relational data
base application program to be suppressed until n

